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Abstract

An attempt has been made to combine a wave solu-

tionmethod and an unsteady flow computation to pro-

duce an integratedaeroacousticcode to predictfar-field

jet noise. An axisymmetric subsonic jet is considered

for thispurpose. A fourth order space accurate Pade

compact scheme isused for the unsteady Navier-Stokes

solution.A Kirchhoffsurfaceintegralforthe wave equa-

tion isemployed through the use of an imaginary sur-

face which isa circularcylinderenclosingthe jet at a

distance.Information such as pressureand itstime and

normal derivativesisprovided on the surface.The sound

predictionisperformed side by side with the jet flow

computation. Retarded time isalsotaken into consid-

erationsincethe cylinderbody isnot acousticallycom-

pact. The far-fieldsound pressure has the directivity

and spectra show that low frequency peaks shiftto-

ward higher frequency region as the observationangle

increasesfrom the jetflow axis.

I.utroduction

Jet noisesuppressionhas appeared as a criticalis-

sue forthe viabilityoffuturesupersonicflight.The FAR

36 StageIllimposes the same noiselimitationon future

supersoniccommercial flightas itdoes on subsonic air-

craft.This bringsfortha challengingtask toreduce the

jet noisein the High Speed CivilTransport Program.

In orderto accomplish thistask,assessment of far-field

noisegenerated by a jet plume is a prerequisiteto the

designofthe engine.Jet noiseisgenerated as a byprod-

uct ofthe plume flow behind the exhaust nozzle.Flow

turbulencehas been believedtobe a sourceofthe sound.

LighthillI showed that the flow turbulence,which isre-
ferredtoas the fluctuatingReynolds stressorLighthill's

tensor,isthe sound source.Since then, turbulent flow,

which had been generallyaccepted as a totallychaotic

entity,has been a centraltheme in the aeroacousticre-

search. For an estimation of the sound pressure using

the acousticanalogy approach, the two-pointfourth or-

der correlationof the fluctuatingReynolds stressmust

be computed. To make thistractable,Proudman 2 pur-

sued a noise generation theory that assumes the isen-

tropicturbulence.A varietyof manipulation and mod-

ellingof the flow turbulence has been made based on a

fully turbulent assumption since then.

Freymuth 3 observed organized large eddy struc-
tures in a separated flow of a jet. Brown and Roshko 4

also found large vortical structures in a free shear layer.

These findings of the vortical pattern in the free shear

layer filled the gap between an initial wave region, in
which a linear theory is applied, and the fully turbulent

downstream region. The flow regime dominated by the

large vortical structure is not fully random and is pre-
dictable in a deterministic way. This organized structure

maintains its identity up to the point where the poten-

tial core begins to collapse but is still discernable even in

the fully turbulent region far downstream. Winant and

Browand s reported that a mechanism of the mixing layer

growth is an interaction of adjacent large vortices. These

investigators have shown that the flow in free shear lay-
ers such as jet and plane mixing flow is well behaved and

more organized than previously thought. Shear flow is
dominated by laxge vortical structures, which are very

predictable and controllable. This shear flow, which had

been thought to be fully turbulent and therefore random
and chaotic, has become research subject with a quite

different perspective since the observation of these or-

ganized structures. A decomposition of the fluctuating

flow quantity into the organized flow entity and the fully
random entity makes it possible to study turbulent shear

flows in a certain deterministic way.

Experiments s have shown that the sound power

emitted from the jet column is greatest within 4 or 5 di-

ameters downstream, and then decays rapidly through a

transition region. This indicates that the initial develop-

ment of the jet, before it becomes fully turbulent, should

be clearly resolved so that an accurate noise prediction
can be made. This region is characterized by large vor-

tical structures and is not fully turbulent, which gives

the motivation that we solve the unsteady flow equation

directly to provide the sound source for an acoustic com-

putation of the far-field noise. Numerical solution of tur-
bulent flow is difficult because the turbulent flow field is

made up of a range of length scales from the Kolmogorov

scale to the integral scale. If numerical mesh size can
be made fine enough to resolve the smallest scales which

dissipate the kinetic energy, then direct numerical sim-

ulation (DNS) is the tool to obtain the entire turbulent
flow structure. However, the dissipative scale becomes

finer as the Reynolds number is increased and practical

hardware limitations are rapidly reached. Therefore, the
DNS method is limited to simulating only low Reynolds

number turbulence. For practical computation of higher

Reynolds number flows, small scale fluctuations can be



modeledsothat desiredlargescaleeddiescanbecom-
puteddirectly,whileproperdissipationis providedby
thesmallscaleeddymodel. Thisapproach,whichis
referredto aslargeeddysimulation(LES),hasbeen
successfullyemployedin manyflowswithpracticalap-
plications.

In orderto obtainthe flowfield asthesourceof
soundusingDNSor LES,thesimulationsmustbeper-
formedusingnumericaltechniqueswithminimaldistor-
tionanddiffusivecharacteristics.Thesourceof numer-
ical diffusionandphaseerroris knownto bemainly
fromthenumericalformulationoftheconvectiveterms.
Thesenumericalartifactsgetworsefor highReynolds

number flow simulations. Typically, free shear flows of

interest have very high .Reynolds numbers. Therefore, a

higher order accurate numerical scheme which meets the
previously mentioned requirements is needed. Fourth

order Pade compact differencing scheme with a disper-

sion relation preserving property is used here.

It is the purpose of this paper to present a method
to predict the far-field pressure directly from the numeri-

cally generated unsteady flow solution without recourse
to empirical factors. Therefore, only an axisymmetric

laminar jet is considered in the process of incorporat-

ing a wave solution into the higher order accurate flow
solver. Furthermore, the flow solution is limited to the
subsonic case since supersonic jets often generate shock

related noise in addition to the shear noise due to flow

turbulence, which makes the problem more complicated.

The Kirchhoff surface integral method is chosen for the

solution of the wave equation. The acoustic result ob-

tained is the far-field sound caused by the wavy motion

and large vortical structure of the free shear layer. Fine

scale random turbulence is not addressed in this study.

Governing Equation of Fluid Flow

f

pu

pu 2 + P - R_e%:x

pUV -- R-_erxr

k aT

(7-1)RePrM_ Ox

pv

puv -- _ rxr

g = pv 2 + P - R-_er_

(7- I)RePrM_

where superscript T is the transpose of the matrix, (u, v)

are the velocities in (x, r), and the source term s and
stress tensors are defined as:

[g+ (0,0,p- r¢¢, 0) T]

cgu cgv

r_x =AV'u+2#_z , rr_=AV-u+2#_r,

Ou Ov
T**=aVu+2"vr

Heat conductivity k and viscosity # are scaled by k_ and
#_., which are the values at T_'. The second viscosity ._

is -_#. Dimensionless numbers, Re and Pr, are the
Reynolds and Prandtl numbers defined to be p_u;l;/#;

and #;cp/le:, respectively. The dimensionless speed of

sound c becomes v_/M_. Equation (1) is written in

generalized coordinates _ and _7as:

The variables T, p, x, u, t, p, and e are dimensionless

quantities of temperature, density, position, velocity,

time, pressure, and total energy per unit mass based on

reference quantities T;, p_, I_, u_, t_, p_ and e_, respec-

tively. Additional definitions are t; = l_/u,,p_ = p_u],

and e_ = u]. Then the equation of state becomes the

following:

pT
p= _ with T-7(7-1)M](e u2 + v22 )

where 3' is the ratio of specific heats, Mr = u;/_--_,

here R is the gas constant. The Navier-Stokes equa-

tions for axisymmetric flow in the cylindrical coordinates

(x, r) are written as :

0Q OF 0G

0-7 +_ +_ =s where Q= Jq, S= Js (2)

J = (_rr/_-(_r) -1, F = J((=f+(_g), G = JO?=f+rl_g)

Formulation of Difference Scheme

To obtain a first derivative of f(x), a Pade compact

differencing 7's'9 is formulated as :

af_-i -t-f[ + c_f'+l ----b fi+2 4h-fi-2 + afi+l 2h-fi-i (3)

where h is the mesh size. If we use the truncated Taylor

series to make equation (3) a fourth order approxima-

tion, the values of a and b are :

Oq Of Og
0_-+_z+_r=S where q=(p, pu,pv,pe) T (i)

2a + 4 4(_ - 1
a -- and b -

3 3



Equation (3) can render a sixth order accuracy if a is
1 In a general fourth order formulation, a is aset to g.

free parameter and it will be optimized by the disper-

sion relation preserving concept proposed by Tam and
Webb 1° as described below. Fourier transform of f(x)

and its inverse are defined as :

1 S +°_~f(x) = -_ f(w)e 'w_' dw

Fourier transforming equation (3) by the above defini-

tion gives :

b

i (1 + 2c_ cos ,¢)](w) = i (a sin ,_ + _sin 2,_)f(w)

This expression indicates that the wave number is de-

formed by our discretization process into a different
wave number as :

a sin _:+ _sin 2,_
= (4)

1 + 2a cos _

where i¢ is the input wave number defined to be wh and

the deformed response wave number. In reference [10]

the optimum a is chosen so that the following function

K is minimized. (i.e OK/Oa = O)

Qo) _ Q-

Q(_) _ q-

q(a) _ q.

q(4) _ qn

= f,r/2K (,_ - 7_)2 d_
J-z�2

The optimum value of a is computed to be 0.35619. Fig-
ure 1 shows the wave relation. The straight line is for the

exact derivative. It is also found that the fourth order

approximation with the optimum value of a has better
wave performance than the sixth order approximation

in the most compact form.

The four-stage Runge-Kutta technique 11 is adopted

for an explicit time advancement formulation. To obtain

new flow variables at t = (n + 1)At from known data at

t = nAt, equation (2) is used to advance the solution in

time as follows :

= O_ 1 AtW (0)

= _2 AtW(1)

= _a AtW(2)

= a4 AtW (3) 4- D

where W (k) denotes S - 0F/0( - 0G/0r/ evaluated at

the k-th stage. The stage 0 and 4 are at the time, nAt

and (n+ 1)At. The parameters, al, a2, a3, c_4, are given
1 1. This time difference is second orderto be ¼,½, 7 ,

accurate and the intermediate variables are not stored

at every stage.
A numerical dissipation term D is added during

the fourth stage to enhance the numerical stability. The

dissipation term is introduced to be of sixth order so
that our fourth order accuracy remains intact.

D =w,J( 06q 06q)

where we is a constant and 06q/0( 6 is given by :

0Sq

-_ = 15(qi+lj + qi-lj) - 6(qi+22 + qi-2j)

+ (qi+3j + qi-3/) - 20qi/

The derivative 06q/0r/6 in the r/ direction is obtained

in the similar manner. This numerical dissipation is

applied to internal points.

Boundary Condition

The boundary treatment considered here is a com-

bination of characteristic and algebraic boundary condi-
tions. The characteristic boundary condition solves the

governing equation in a characteristic form in each coor-
dinate direction and the algebraic boundary conditions

are the given boundary conditions such as temperature,
total temperature, velocity, etc. Equation (2) is written
in a non-conservative form as:

0q 0q 0q

0_- + A _'- + B _--_ = s_

where Sr = r-l(rlxF -- _xG + s),A = 0Fi/0q, B =

OGi/Oq, and the subscript i denotes the inviscid part.
For the _ direction, equation (2) with a transformation

dq = Rfd61 becomes

0fi 1 0_1 1 0_t
0-'Y+ R_- AR_ _- + R_" Bit, N = 0

If we construct the matrix R_ such that the eigenvectors
of the matrix A constitute its columns then the matrix

by a similarity transform becomes a diagonal matrix,
whose entries are the eigenvalues of A such that

R_-IAR_ = A_ = diag(U, U, U + a_, U - a_)

where a¢ = c_/_2+(_. Here, c is the speed of sound

defined to be v_/Mr, and U = _u + (vv. In the same

way, for the 7/direction the diagonal matrix becomes "

R_IBRn = A_ = diag(V, V, V + an, V - a,)



/_==.

where a, = c x/rl_ + rlg, and V = rl_u+rluv. The charac-
I/

teristic equations are then rewritten in each coordinate
direction to be:

__aq __aq R__OG R___s_ (5)

cqq 0q R_ "1 0F Rffls _ (6)+ 7

Nonreflecting boundary conditions x2'13 can be con-

structed by setting any eigenvalue, which is the element

of A, to be zero, if a wave is incoming towards the com-

putational domain.

Jet Flow Calculation

The subsonic jet Mach number is 0.6 and the ambi-

ent air is at M=0.2 and the two streams are brought to

be mixed at the same temperature. The reference length

l_ is taken to be the nozzle radius R. u_ is the average
velocity of the two streams and Mr is the average Mach

number of the two streams. Since the temperature vari-
ation is assumed small over the entire flow domain the

viscosity and the heat conductivity are held constant

at the reference temperature T_" = 298°K. The inlet

boundary conditions are given by :

u = 1 - Astanh(20(r - 1)), v = 0, T = 1 (7)

and there is one characteristic equation for the outgo-

ing wave. The shear ratio As is defined to be Au*/u_,

where Au* is the velocity difference in the two streams.
The characteristic boundary conditions at the exit and

side boundary planes are given as described in equations

(5) and (6). As to initial condition, u has the above
tanh profile, v = 0, T = 1, p = 1, p = (7M_). --1. The

Reynolds and Prandtl numbers are 174000 and 0.707, re-

spectively. The nozzle radius R, which is the reference

length l_, is taken to be 1.95 cm.

A 600 x 160 stretched grid, which extends up to

about 59.3 and 9.2 radii in the respective axial and ra-

dial directions, is used. Figure 2, drawn at every fourth

grid line, shows the grid clustered near the nozzle height.

Instantaneous contour plots of the vorticity, Mach num-

ber, and static pressure are presented in Figure 3. These

clearly indicate a large vortical structure in the devel-

oping jet flow. Local pressure minima coincide with the

centers of vortices. Figure 4 is the time sequence of the

vorticity of the jet. Each frame of the contour plots is

100At apart. The flow structure is wavy yet well con-

nected in the early stage of the flow development region.

This wave motion is magnified and the confined vorticity

layer rolls up to form a discrete vortex lump, which can

be seen in every frame of vorticity contour. This vortex

roll-up is followed by vortex shedding and vortex pairing

as the flow proceeds downstream. The vortex pairing is

the coalescence process of two consecutive vortices and

is known as the shear layer growth mechanism. The con-

vective velocity with which the large vortical structure

moves is obtained to be 1.06 from Figure 4, which is
very close to the mean velociy of the two streams. The

convective velocity is constant regardless of the loca-

tion and size of the vortex. The only exception is when

the vortex pairing takes place where the vortex which

travels behind the preceeding one speeds up to catch up
with the latter and the two slide on each other to coalese

into a larger one. The convective velocity obtained by

the present computation agrees very well with the ex-
pressions given by Dimotakis 14 and Papamoschou and

Roshko is. They assumed that the dynamic pressure of
the two streams should be about the same in the frame

which moves with the convective velocity.

Figure 5 shows the axial velocity spectra. The

abscissa is St(D), the Strouhal number defined to be

fD/Uj with Uj the jet center velocity at the nozzle
exit and the ordinate represents the absolute value of
Fourier coefficient. D is the diameter of the nozzle. The

most preferred frequency of St(D)=0.63, which appears

dominant at the upstream region, persist up to z=4D

in Figure 5. This dominant high frequency shifts to-

wards the low frequency and the spectra show the single

most dominant frequency of about St(D)=0.35 from the
downstream of z=6D. This frequency is close to the av-

erage Strouhal number of 0.3 based on the downstream

puff counts by Crow and Champagne 16. Many experi-

ments have confirmed that the St(D) of about 0.3 is the
dominant frequency of the organized vortical structure

where the potential core ceases to exist.

Peaks in the power spectra of the u velocity show

the most preferred frequencies : St(8)=0.006 at x=D/2

and D, St(0)=0.021 at x=2D, St(0)=0.022 at z=3D,

and St(8)=0.034 at x=4D. This Strouhal number is de-

fined to be fO/Uj with 0 the local momentum thickness
defined as :

0 - 1 (U - U,)(UI - U) dr (8)
AU 2

St(O) is the most frequently used flow parameter in de-

scribing initial flow development. According to the lin-

ear theory by Michalke 17, the most amplified St(O) is

about 0.017 for a spatially evolving jet flow with a hy-

perbolic tangent mean velocity profile. The linear the-
ory agrees with Freymuth's experiment 3 up to about

St(O)=O.O1, but experiment exhibits a flat peak area

over 0.01 _< St(O) < 0.025. Considering a flow region in
which flow solution adjust itself from a boundary condi-

tion to a flow solution, the computed Strouhal number

of about 0.02, which is most preferred at x=2D and 3D,

is close to both the theory and the experiment.



ThemeanaxialvelocityprofilesaregiveninFigure
6. Thepotentialcorein themiddleerodesasflowpro-
ceedsdownstreamandvanishesasshownatz=8D. Fur-
therdownstreamthemeanvelocityprofilemaintainsthe
sameprofileasat x=8D rather than undergoing rapid

decay. This is a huge departure from the experimental

observation. Figure 7 also shows the profiles of Urms.

The growth of Urms at the nozzle height (i.e. r=l) is

shown in Figure 8. Both natural and forced cases are

presented. Forcing is given at the most preferred up-

stream St(D) of 0.63 and its subharmonic 0.315. urms
becomes saturated at about 0.3 for all three cases. The

maximum of Urms grows up to about 0.3 and never de-

cays far downstream. An Euler computation shows es-
sentially the same results as the viscous computation.
This is because our viscous computations do not include

an adequate device dissipating turbulence energy due to
small scale random motion.

Far-field Sound Prediction

As mentioned earlier, the flow field as simulated will

be used as the sound source. There are two main ways to

predict far-field noise from the numerical flow solution.
The first approach is the acoustic analogy. According to

Lighthill's acoustic analogy, the wave equation for static

pressure p can be obtained as :

OZP a_ o2p 02

where a0 is the reference ambient speed of sound. A
deviation from an isentropic state, which is 02(p-

a_p)/Ot _, is neglected in equation (9). The source
term in the right-hand-side of the above equation is of

quadrupole type. If the source term is assumed a pr'/-
ori known and physical obstacles are not present, the

solution of equation (9) is given by a volume integral as

1 /v 1[q],dV(y) (10)p(x,0 - p0=

where r = Ix - y[, P0 is the undisturbed pressure, q the

source terms in equation (9) and the quantity in []* is

defined as :

[q]* = q(y,l+) = q(y,t- r)
a0

t+ is called the retarded time, which is the emission time

for a acoustic signal to travel from the source point y

to the field point x. Figure 9-(a) shows the geometric
variables used in the above definition. P(x) is the field

point where p is being sought and Q(y) is the source
point. More details of the acoustic analogy method can
be found in Fuchs and Michalke is. Direct computa-

tion of the far-field sound by the acoustic analogy from

the unsteady flow solution can be found in the refer-

ences[19,20]. The acoustic analogy is a useful method

to predict a far-field pressure. However, because it uses

the wave equation as a governing equation even in the

flow region where all kinds of nonlinear interactions oc-

cur, the solution omits important wave phenomena such
as the refraction due to shear and the doppler effect by

movement of the source element.

If the wave phenomenon is separable from the fluid

dynamics, the wave equation can be solved to take into
account all the physical effects. Let us imagine that

away from the flow area there is a region where flow

fluctuation is negligible so that a pure acoustic field as-

sumption is valid. In this case, the flow and the acoustic

regions can be separated and the flow equation and the

wave equation can be solved side by side in their respec-

tive regions. Acoustic information is transfered from the
flow solution on the boundary joining the two regions.

This surface away from a flow regime is illustrated in

Figure 9-(b). If all the necessary pressure information is

provided on the surface, the pressure at x can be given

by the Kirchhoff surface integral form as :

1 /A 10p]. 1 Or
(11)

1 cgr_c3p].}
aor an [-_ dA(y)

where []* has the same definition as before and n the
unit normal to the surface. Equation (11) is the solution

of the wave equation for the acoustic medium at rest.

The necessary information includes the pressure and its
normal and time derivatives on the surface.

Wave Solution Ezample

A pressure wave, which is generated by a simple

monopole source and radiated spherically, has been cho-

sen as an example problem to demonstrate the surface

integral method given by equation (11). The pressure

satisfying a homogeneous form of the wave equation (9)
can be written as :

p-po = sin 2r(r- t)/r (12)

Length and time are nondimensionalized by wave length
A and inverse of frequency f-1. We now choose a cylin-
der surface as an arbitrary boundary surface on which

the histories of p, pn,Pt are provided. This is shown in

Figure 10. The source is located at the origin. The
cylinder radius is 0.5 and length is unity, so the cylinder

is not acoustically compact. For a spatial resolution in

the surface integral, Az and Ar are taken to be _.1 Cir-
cumferntial elements are set to be 100 on the side and

two lid surfaces of the cylinder. For retarded time con-

sideration, a complete set of pressure information over



anentiretimeperiodisneeded.Far-fieldpoints,which
areobservationpoints,arelocated10° apartat a dis-
tancer = 50A as shown in Figure 10. Only angles from
0° to 900 are considered due to symmetry. Figure 11

plots the sound pressure (i.e. Prms) against observa-

tion angle and shows how crucial it is to resolve the
retarded time. Exact value of the Prms for this example

is 0.01414 with no preferred directivity. Prms obtained

by employing 40 time elements is almost the same as

the exact solution. Figure 12-(a) also shows the time

history of the pressure at angles 0° and 90 °. The two
curves show little difference when 40 time segments are

used in resolving a time period. It can be concluded

that a proper resolution of the retarded time is essential

to get the correct wave characteristics. Figure 12-(b)

is for an instantaneous pressure against distance which

decays as r -1. Two curves at 0 ° and 900 are identical

with 40 time elements per period.

If the source has multiple frequency contents, the

refinement of the retarded time is increasingly impor-

tant since the highest frequency of interest should be

adequately resolved. Likewise, the spatial refinement

also becomes important. Therefore, for wave propaga-

tion, which is generated by a distributed source with

frequencies varying over a broad range, refinement of
surface elements should be emphasised as well.

Far-Field Sound Generated by Unsteady Jet Flow

Figure 13 gives the schematics of the surface on
which the pressure information is specified and the field

positions where the noise is observed. A cylinder is cho-

sen to accomodate a jet column. The radius of the cylin-

der is about 4R and the length is about 20R. The obser-

vation points are on the plane comprising the axis of jet

center spacing 10° apart circumferentially at distances of
200R and 400R. For the frequency of about S_(D)=0.3,

which is fluid dynamically dominant downstream, an

acoustic wave length can be estimated to be about 11

for the jet of M=0.6 speed. This length could be much

shorter for the wave with upstream preferred Strouhal

number. Therefore, the cylinder body chosen can not

be treated as acoustically compact, so the retarded time

contribution should be considered. The length of time

record we have to keep track of depends on the size of

the cylinder. The difference between the minimum and
maximum times to transmit an acoustic signal to the

observation point is about 16 (i.e. times taken for the

sound to travel from A to B and from A to C). With

At of 0.00875, 1867 time steps are needed to cover the

retarded time which spreads over 16 time units. This is

too long, so the acoustic computation is performed at

every 3 time steps. We set Ats = 3At and 630Ats are

used to retarded time distribution in the noise compu-

tation. The At and At_ are referred to as the flow and

acoustic time steps, respectively.

The cylinder surface is divided into 80 circumferen-

tial elements, but only half of them are used due to the

axisymmetry. In performing the surface intergal of equa-

tion (11), a contribution by two lid surfaces is omitted
and only the side surface of the cylinder is considered.

258 mesh points in the axial direction are used to form

a cylinder which extends to x=20R downstream with

the radius of 4R. Therefore, an additional storage of

258 x 630 for each of P, Pn, and Pt and 258 x 40 x No

for each of r and Or�On is needed. No is the number of

observation points, which is 19 in the present work, and

40 is the half of the circumferential elements.

The OASPL (the overall sound pressure level) at

r=200R and 400R is given in Figure 14. The com-

puted result qualitatively agrees with the experiment by
Moore 21 which revealed the maximum in the OASPL

at about 200 over a variety of subsonic speed condi-

tions. The differences are that the present OASPL has

the maximum at about 100 and double-peak in 10 ° to
40 °, whereas the experimental data shows a single peak

in this area. Figure 15 shows the spectra of the pressure

at r=100D. At 0°, peak Strouhal numbers are 0.13,
0.20, 0.28, 0.46. At 10 °, peak Strouhal numbers axe

0.13, 0.20, and 0.46. From the pressure spectra between

0° and 200 the dominant frequencies fall in the range

of S$(D)=O.13... 0.28. As the angle diverges from the
flow direction, the dominant peak shifts toward higher

frequencies, which is Strouhal number of 0.61 briefly at

300 and of 0.46 for a broad range of angle.

Conclusion and Discussion

Far-field sound pressure has been evaluated directly
from a side-by-side computation with the solution of un-

steady jet flow. The OASPL has maximum directivity

at about 10° from the jet flow axis. The spectra of

the far-field pressure show a similar trend as the exper-

iment in that low frequency dominates at the smaller

angle from the flow axis and shifts to the higher fre-

quency as the angle increases. Although the present re-

sults agree qualitatively with the experimental observa-

tions, the present method has the following limitations

: (1) helical mode of the jet flow is excluded due to

the axisymmetry assumption, which has a strong effect

on the growth of the instability downstream. (2) The

turbulence intensity never decays even far downstream

because no adequate dissipating mechanism is provided

for small scale turbulence energy. (3) The Green's fun-

tion used in the Kirchhoff surface integral for the wave
is best suited to wave propagation problems through a

quiescent medium, so the surface integral is to be modi-

fied to be the solution of the convective wave equation if

the surrounding fluid has some considerable flow speed.

Items (1) and (2) suggest that the flow simulation



beofLES type so that the jet flow solution can accomo-
date a non-axisymmetric mode and mimic a realistic de-

cay of the jet column downstream. This would probably

lead to a quantitatively more accurate noise prediction.
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Figure 13. Cylinder surface for the computation of jet noise.
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